integrate the function....
Attachments:
Answers
Answered by
0
Using Product rule and appropriate substitution will lead us to answer.
Attachments:
Answered by
0
Answer:
Step-by-step explanation:
xsin^- x
x∫sin^- x -∫∫sin^- x dx dx
∫sin^- x
xsin^- x +∫-x dx/√1-x^2
xsin^- x +1/2∫-2x dx /√1-x^2
xsin^- x +1/2∫dz/√z
xsin^- x +1/2(z)^1/2/1/2
xsin^- x +√z
xsin^- x +√1-x^2
therefore
x∫sin^- x - ∫∫sin^- x dx dx
x{xsin^- x +√1-x^2) - ∫xsin^- x +√1-x^2 dx
x{xsin^- x +√1-x^2}-∫xsin^- x -∫√1-x^2 dx
x{xsin^- x +√1-x^2} - ∫xsin^- dx -x√1-x^2/2 -(sin^- x) /2
∫xsin^- x =x{xsin^- x +√1-x^2} - ∫xsin^- dx -x√1-x^2/2 -sin^- x /2
2∫xsin^- x = x{xsin^- x +√1-x^2}-x√1-x^2/2 -(sin^- x) /2
∫xsin^- x =x{xsin^- x +√1-x^2}/2-x√1-x^2/4-(sin^- x )/4
Similar questions
Science,
8 months ago
Accountancy,
8 months ago
Science,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago