Math, asked by Aaravchetry, 9 months ago

Integrate the function ​

Attachments:

Answers

Answered by shadowsabers03
6

We're given to solve,

\displaystyle\longrightarrow\sf{\int\sqrt{\dfrac{1+x}{1-x}}\ dx=\,?}

Let,

\displaystyle\longrightarrow\sf{x=\cos(2\theta)\quad\implies\quad2\theta=\cos^{-1}(x)}

\displaystyle\longrightarrow\sf{dx=-\sin(2\theta)\times2\,d\theta}

\displaystyle\longrightarrow\sf{dx=-2\sin(2\theta)\,d\theta}

Hence,

\displaystyle\longrightarrow\sf{\int\sqrt{\dfrac{1+x}{1-x}}\ dx=-2\int\sqrt{\dfrac{1+\cos(2\theta)}{1-\cos(2\theta)}}\cdot\sin(2\theta)\,d\theta}

But,

  • \sf{1+\cos(2\theta)=2\cos^2\theta}

  • \sf{1-\cos(2\theta)=2\sin^2\theta}

Then,

\displaystyle\longrightarrow\sf{\int\sqrt{\dfrac{1+x}{1-x}}\ dx=-2\int\sqrt{\dfrac{2\cos^2\theta}{2\sin^2\theta}}\cdot\sin(2\theta)\,d\theta}

\displaystyle\longrightarrow\sf{\int\sqrt{\dfrac{1+x}{1-x}}\ dx=-2\int\sqrt{\dfrac{\cos^2\theta}{\sin^2\theta}}\cdot\sin(2\theta)\,d\theta}

\displaystyle\longrightarrow\sf{\int\sqrt{\dfrac{1+x}{1-x}}\ dx=-2\int\dfrac{\cos\theta}{\sin\theta}\cdot\sin(2\theta)\,d\theta}

Since \sf{\sin(2\theta)=2\sin\theta\cos\theta,}

\displaystyle\longrightarrow\sf{\int\sqrt{\dfrac{1+x}{1-x}}\ dx=-4\int\dfrac{\cos\theta}{\sin\theta}\cdot\sin\theta\cos\theta\,d\theta}

\displaystyle\longrightarrow\sf{\int\sqrt{\dfrac{1+x}{1-x}}\ dx=-4\int\cos^2\theta\,d\theta}

Taking \sf{\cos^2\theta=\dfrac{1+\cos(2\theta)}{2},}

\displaystyle\longrightarrow\sf{\int\sqrt{\dfrac{1+x}{1-x}}\ dx=-2\int\left(1+\cos(2\theta)\right)\,d\theta}

\displaystyle\longrightarrow\sf{\int\sqrt{\dfrac{1+x}{1-x}}\ dx=-2\int d\theta-2\int\cos(2\theta)\,d\theta}

But,

\displaystyle\longrightarrow\sf{\dfrac{d(2\theta)}{d\theta}=2}

\displaystyle\longrightarrow\sf{d\theta=\dfrac{d(2\theta)}{2}}

Then,

\displaystyle\longrightarrow\sf{\int\sqrt{\dfrac{1+x}{1-x}}\ dx=-2\int d\theta-\int\cos(2\theta)\,d(2\theta)}

\displaystyle\longrightarrow\sf{\int\sqrt{\dfrac{1+x}{1-x}}\ dx=-2\theta-\sin(2\theta)+c}

Undoing \sf{2\theta=\cos^{-1}(x),}

\displaystyle\longrightarrow\sf{\int\sqrt{\dfrac{1+x}{1-x}}\ dx=-\cos^{-1}(x)-\sin(2\theta)+c}

But,

\displaystyle\longrightarrow\sf{\sin(2\theta)=\sqrt{1-\cos^2(2\theta)}}

\displaystyle\longrightarrow\sf{\sin(2\theta)=\sqrt{1-x^2}}

Then,

\displaystyle\longrightarrow\underline{\underline{\sf{\int\sqrt{\dfrac{1+x}{1-x}}\ dx=-\cos^{-1}(x)-\sqrt{1-x^2}+c}}}

Similar questions