Math, asked by anupam2715, 1 year ago

integrate the function integration tan inverse x dx

Answers

Answered by MarkAsBrainliest
21

Answer :

Let us take,

tan⁻¹x = z

or, x = tanz

Then, dx = sec²z dz

Since, sec²z - tan²z = 1

or, sec²z - x² = 1

or, sec²z = 1 + x²

or, secz = √(1 + x²)

Now, ∫ tan⁻¹x dx

= ∫ z sec²z dz

= z ∫ sec²z dz - ∫ { d/dz (z) ∫ sec²z dz } dz

= z tanz - ∫ tanz + c,

since ∫ sec²z dz = tanz and c is integral constant

= z tanz - log (secz) + c,

since ∫ tanz dz = log (secz)

= x tan⁻¹x - log {√(1 + x²)} + c

= x tan⁻¹x - (1/2) log (1 + x²) + c,

which is the required integral

#MarkAsBrainliest


RohitSaketi: B-)
Prakhar2908: awesome
Answered by Shubhendu8898
7

 I = \int{\tan^{ - 1} x } \, dx \\ \\ I = \int{\tan^{ - 1} x * 1 } \, dx \\ \\ I = \tan^{ - 1}* \int{1} \, dx \, \, - \, \int{ \frac{d(\tan^{ - 1}x)}{dx} \int{1} \, dx }  \\ \\   I = xtan^{ - 1}x \, -  \int{\frac{x}{1+ x^{ 2}}}dx \\ \\  I = xtan^{ - 1}x \, - I_1(let) \\ Now, \\ \\  I_1 = \int{\frac{x}{1 + x^{ 2}}dx

 let, 1 +x^{2}  = t  \\ \\  xdx = \frac{dt}{2}\\ \\ So, \\ \\  I_1 = \frac{1}{2}\int{\frac{1}{t}\,dt  \\ \\ =\frac{1}{2} logt

 I_1 = \frac{1}{2}log(1 + x^{2})} \\ \\   Therefore, \\ \\  I = xtan^{-1}x \, - \frac{1}{2}log(1 + x^{2})}  + c


Swarup1998: ??
Mankuthemonkey01: Not understandable
Shubhendu8898: Actually, i think there is any system error. it is showing good in browser
Mankuthemonkey01: yep got that bro sorry to disturb :-(
Noah11: it is showing perfect in browser
Noah11: might be a glitch or something
Similar questions