Math, asked by BrainlyHelper, 1 year ago

integrate the function √tanx/sinxcosx.dx

Answers

Answered by ajeshrai
8
you can see your answer
Attachments:
Answered by abhi178
11
\bf{\int{\frac{\sqrt{tanx}}{sinx.cosx}}\,dx}
multiplying cosx both numerator and denominator
\bf{\int{\frac{\sqrt{tanx}.cosx}{sinx.cos^2x}}\,dx}\\=\bf{\int{\frac{\sqrt{tanx}.sec^2x}{\frac{sinx}{cosx}}}\,dx}\\=\bf{\int{\frac{\sqrt{tanx}.sec^2x}{tanx}}\,dx}\\=\bf{\int{\frac{sec^2x}{\sqrt{tanx}}}\,dx}

Let tanx = P.
differentiate with respect to x ,
sec²x.dx = dP
so, \bf{\int{\frac{sec^2x}{\sqrt{tanx}}}\,dx}=\int{\frac{dt}{\sqrt{t}}}
= 2\sqrt{t}+C
now, put t = tanx
so, I = \bf{2\sqrt{tanx}+C}
Similar questions