Math, asked by BrainlyHelper, 1 year ago

integrate the function sinx/(1 + cosx).dx

Answers

Answered by Ravi1435
0
this is answer.........
Attachments:
Answered by rohitkumargupta
4
HELLO DEAR,

\bold{\int{\frac{sinx}{1 + cosx}}\,dx}

now, let cosx = t \bold{\Rightarrow -sinx = dt/dx}

\bold{\Rightarrow dx = -dt/sinx}

now substitute the value of dx in the function

\bold{\int{\frac{sinx}{1 + t}*\frac{dt}{-sinx}}}

\bold{-\int{\frac{1}{1 + t}}\,dt}

\bold{-\log|1 + t| + C}

\bold{-\log|1 + cosx|}

where, c is the arbitrary constant.

hence, the integral of sinx/(1 + cosx) is (-log|1 + cosx|)


I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions