Math, asked by vhjcd, 6 months ago

integrate the function:
 \frac{1}{ \sqrt{ {(2 - x)}^{2} + 1} }

Answers

Answered by Anonymous
283

Step-by-step explanation:

Step-by-step explanation:

\huge\mathfrak\green{\bold{\underline{☘{ ℘ɧεŋσɱεŋศɭ}☘}}}

\red{\bold{\underline{\underline{❥Question᎓}}}}integrate the function:

 \frac{1}{ \sqrt{ {(2 - x)}^{2} + 1} }

\huge\tt\underline\blue{❯Answer❮</p><p> }

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

Let 2-x=t

differentiating both sides w.r.t.x

0 - 1 =  \frac{dt}{dx}

dx =  - dt

Integrating the function w.r.t.x

∫ \frac{1}{ \sqrt{ {(2 - x)}^{2}  + t} } dx

Put the value of 2-x=t and dx=-dt

 =   ∫  \frac{ - dt}{ \sqrt{ {t}^{2}  + 1} }

 =  -   ∫  \frac{dt}{ \sqrt{ {t}^{2} +  {(1)}^{2}  } }

It is the form of :

  ∫  \frac{1}{ \sqrt{ {x}^{2}  +  {a}^{2} } } dx = log |x +  \sqrt{ {x}^{2}  +  {a}^{2} } | + c

∴ Replace a by 1 and x by t we get

 =  - log |t +   \sqrt{ {t}^{2} + 1 }  |  + c

 = log  { |t +  \sqrt{ {t}^{2}  + 1} | }^{ - 1}  + c

 = log \frac{1}{ |t +  \sqrt{ {t}^{2}  + 1} | } + c

 = log \frac{1}{ |2 - x +  \sqrt{ {(2 - x)}^{2} + 1 } | }  + c

 = log \frac{1}{ |2 - x +  \sqrt{4 +  {x}^{2}  - 4x + 1} | }  + c

 = log \frac{1}{ |2 - x +  \sqrt{ {x}^{2}  - 4x + 5} | }  + c

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by sumanrudra22843
0

Step-by-step explanation:

f(x) = kx³ – 8x² + 5

Roots are α – β , α & α +β

Sum of roots = – (-8)/k

Sum of roots = α – β + α + α +β = 3α

= 3α = 8/k

= k = 8/3α

or we can solve as below

f(x) = (x – (α – β)(x – α)(x – (α +β))

= (x – α)(x² – x(α+β + α – β) + (α² – β²))

= (x – α)(x² – 2xα + (α² – β²))

= x³ – 2x²α + x(α² – β²) – αx² +2α²x – α³ + αβ²

= x³ – 3αx² + x(3α² – β²) + αβ² – α³

= kx³ – 3αkx² + xk(3α² – β²) + k(αβ² – α³)

comparing with

kx³ – 8x² + 5

k(3α² – β²) = 0 => 3α² = β²

k(αβ² – α³) = 5

=k(3α³ – α³) = 5

= k2α³ = 5

3αk = 8 => k = 8/3α

(8/3α)2α³ = 5

=> α² = 15/16

=> α = √15 / 4

Similar questions