integrate the function:
Answers
Step-by-step explanation:
integrate the function:
╔════════════════════════╗
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
Integrating the function w.r.t.x
It is the form of :
∴ Replace a by 1 and x by t we get
╚════════════════════════╝
нσρє ıт нєłρs yσυ
_____________________
тнαηkyσυ
Step-by-step explanation:
☘
℘ɧεŋσɱεŋศɭ
☘
\red{\bold{\underline{\underline{❥Question᎓}}}}
❥Question᎓
integrate the function:
\frac{1}{ \sqrt{ {(2 - x)}^{2} + 1} }
(2−x)
2
+1
1
\huge\tt\underline\blue{❯Answer❮ }
❯Answer❮
╔════════════════════════╗
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
\bold{ Let \:2-x=t}Let2−x=t
\bold{differentiating \:both\: sides \:w.r.t.x}differentiatingbothsidesw.r.t.x
0 - 1 = \frac{dt}{dx}0−1=
dx
dt
dx = - dtdx=−dt
Integrating the function w.r.t.x
∫ \frac{1}{ \sqrt{ {(2 - x)}^{2} + t} } dx∫
(2−x)
2
+t
1
dx
\bold{\red{Put\: the\: value \:of \:2-x=t \:and \:dx=-dt}
= ∫ \frac{ - dt}{ \sqrt{ {t}^{2} + 1} }=∫
t
2
+1
−dt
= - ∫ \frac{dt}{ \sqrt{ {t}^{2} + {(1)}^{2} } }=−∫
t
2
+(1)
2
dt
It is the form of :
∫ \frac{1}{ \sqrt{ {x}^{2} + {a}^{2} } } dx = log |x + \sqrt{ {x}^{2} + {a}^{2} } | + c∫
x
2
+a
2
1
dx=log∣x+
x
2
+a
2
∣+c
∴ Replace a by 1 and x by t we get
= - log |t + \sqrt{ {t}^{2} + 1 } | + c=−log∣t+
t
2
+1
∣+c
= log { |t + \sqrt{ {t}^{2} + 1} | }^{ - 1} + c=log∣t+
t
2
+1
∣
−1
+c
= log \frac{1}{ |t + \sqrt{ {t}^{2} + 1} | } + c=log
∣t+
t
2
+1
∣
1
+c
= log \frac{1}{ |2 - x + \sqrt{ {(2 - x)}^{2} + 1 } | } + c=log
∣2−x+
(2−x)
2
+1
∣
1
+c
= log \frac{1}{ |2 - x + \sqrt{4 + {x}^{2} - 4x + 1} | } + c=log
∣2−x+
4+x
2
−4x+1
∣
1
+c
= log \frac{1}{ |2 - x + \sqrt{ {x}^{2} - 4x + 5} | } + c=log
∣2−x+
x
2
−4x+5
∣
1
+c
╚════════════════════════╝
нσρє ıт нєłρs yσυ
_____________________
тнαηkyσυ