Math, asked by PragyaTbia, 1 year ago

Integrate the function : \int \sqrt{1+x^2}\, dx is equal to
(A)\frac x2 \sqrt{1+x^2}+\frac 12 \log \bigg\arrowvert \bigg(x+ \sqrt {1+x^2}\bigg)\bigg\arrowvert + C
(B)\frac 23 (1+x^2)^{\frac 32}  + C
(C)\frac 23 x(1+x^2)^{\frac 32}  + C
(D)\frac x2 \sqrt{1+x^2}+\frac 12 x^2\log \bigg\arrowvert x+ \sqrt {1+x^2}\bigg\arrowvert + C

Answers

Answered by brunoconti
0

Answer:

Step-by-step explanation:

Attachments:
Similar questions