Math, asked by PragyaTbia, 1 year ago

\int^\frac{2}{3}_0 {\frac{dx}{4+9x^2}
(A)\frac{\pi}{6}[/tex]
(B)\frac{\pi}{12}[/tex]
(C)\frac{\pi}{24}[/tex]
(D)\frac{\pi}{4}[/tex]

Answers

Answered by MaheswariS
0

Answer:

option (c) is correct

Step-by-step explanation:

Concept:

1.If \int{f(x)}\:dx=g(x)+c, then

\int{f(ax+b)}\;dx=\frac{1}{a}g(ax+b)+c

2.\int{\frac{1}{1+x^2}}\:dx=tan^{-1}x+c

Now,

\int\limits^{\frac{2}{3}}_0{\frac{1}{4+9x^2}}\:dx\\\\=\int\limits^{\frac{2}{3}}_0{\frac{1}{(3x)^2+2^2}}\:dx\\\\=\frac{1}{3}\frac{1}{2}[tan^{-1}(\frac{3x}{2})]^{\frac{2}{3}}_0\\\\=\frac{1}{6}[tan^{-1}(\frac{3}{2}\frac{2}{3})-tan^{-1}0]\\\\=\frac{1}{6}[tan^{-1}(1)-tan^{-1}(0)]\\\\=\frac{1}{6}[\frac{\pi}{4}-0]\\\\=\frac{\pi}{24}

Similar questions