Math, asked by PragyaTbia, 1 year ago

Integrate the function : \int \sqrt{x^2-8x+7}\, dx is equal to
(A)\frac 12 (x-4)\sqrt{x^2-8x+7}+9\log \bigg\arrowvert x-4+ \sqrt{x^2-8x+7}\bigg\arrowvert + C
(B)\frac 12 (x+4)\sqrt{x^2-8x+7}+9\log \bigg\arrowvert x+4+ \sqrt{x^2-8x+7}\bigg\arrowvert + C
(C)\frac 12 (x-4)\sqrt{x^2-8x+7}-3\sqrt{2}\log \bigg\arrowvert x-4+ \sqrt{x^2-8x+7}\bigg\arrowvert + C
(D)\frac 12 (x-4)\sqrt{x^2-8x+7}-\frac{9}{2}\log \bigg\arrowvert x-4+ \sqrt{x^2-8x+7}\bigg\arrowvert + C

Answers

Answered by MaheswariS
0

Answer:

option (d) is correct

Step-by-step explanation:

Formula used:

\int{\sqrt{x^2-a^2}}\:dx=\frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}log|x+\sqrt{x^2-a^2}|+c

Now,

\int{\sqrt{x^2-8x+7}}\:dx\\\\=\int{\sqrt{x^2-8x+7+9-9}}\:dx\\\\=\int{\sqrt{(x^2-8x+16)-9}}\:dx\\\\=\int{\sqrt{(x-4)^2-3^2}}\:dx\\\\=\frac{(x-4)}{2}\sqrt{(x-4)^2-3^2}-\frac{3^2}{2}.log|(x-4)+\sqrt{(x-4)^2-3^2}|+c\\\\=\frac{(x-4)}{2}\sqrt{x^2-8x+7}-\frac{9}{2}.log|(x-4)+\sqrt{x^2-8x+7}|+c

Similar questions