Math, asked by PragyaTbia, 1 year ago

Integrate the function w..r. to x : \frac{\log(\log x)}{x}

Answers

Answered by hukam0685
0
To solve this we must convert into integrable form,by substitution.
Let

 log\:x = t\\\\\frac{1}{x} dx= dt\\

Now substitute the assumption

\int\frac{log\:(log\:x)}{x} dx=\int log \:t \:dt\\\\

Now Integration it by parts

\int log \:t\: dt=log\: t\int 1\: dt-\int[\frac{d\: log t}{dt}]\:dt\\\\=t \:log\: t-t +C\\\\

Now undo substitution

\int\frac{log\:(log \:x)}{x} dx=log \:x(log\: log \:x)-log\: x +C\\\\

or

\int\frac{log\:(log \:x)}{x} dx=log \:x[(log\: log \:x)-1] +C\\\\
Similar questions