Math, asked by PragyaTbia, 1 year ago

Integrate the function w..r. to x : \sin\theta\cdotp\log (\cos\theta)

Answers

Answered by hukam0685
0
This integration can be done by substitution then applying by parts

Let

 cos\:\theta = t\\\\ sin\:\theta\:d\theta= -dt\\

After substituting ,we get

-\int (log\: t) dt=log\: t\int 1 dt-\int (\frac{log \:t}{dt}\int 1 dt) dt\\\\= t \:log\: t -\int \frac{1}{t}.{t} dt\\\\= t \:log t-t +C\\\\\int log \:t dt = t - log \:t+C\\\\

Now undo substitution

\int sin\:\theta \:log(cos \:\theta) \:d\theta= cos\: \theta -log\:(cos \:\theta)+C\\\\
Similar questions