Math, asked by PragyaTbia, 1 year ago

Integrate the function : x sin x

Answers

Answered by MaheswariS
0

Answer:

\bf\int{x\:sinx}\:dx=-x\:cosx+sinx+C

Step-by-step explanation:

Integrate the function : x sin x

I have applied integration by parts method to solve this integral

\int{x\:sinx}\:dx

Take

u=x

\frac{du}{dx}=1

\implies\:du=dx

and

dv=sinx\:dx

\int{dv}=\int{sinx}\:dx

\implies\:v=-cosx

Using

\boxed{\int{u}\:dv=uv-\int{v}\:du}

\int{x\:sinx}\:dx=x(-cosx)-\int{(-cosx)\:dx}

\int{x\:sinx}\:dx=-x\:cosx+\int{cosx}\:dx

\implies\:\boxed{\int{x\:sinx}\:dx=-x\:cosx+sinx+C}

Similar questions