Math, asked by livegamer2304, 19 days ago

integrate the given question by substitution method ​

Attachments:

Answers

Answered by anindyaadhikari13
5

Solution:

Given Integral:

\displaystyle\rm\longrightarrow I=\int\dfrac{2x}{2e^{x^{2}}}\: dx

Let us assume that:

\rm\longrightarrow u=x^{2}

\rm\longrightarrow du=2x\: dx\\

Therefore, our integral becomes:

\displaystyle\rm\longrightarrow I=\int\dfrac{2x\: dx}{2e^{u}}

\displaystyle\rm\longrightarrow I=\int\dfrac{du}{2e^{u}}

\displaystyle\rm\longrightarrow I=\int\dfrac{1}{2}\dfrac{du}{e^{u}}

\displaystyle\rm\longrightarrow I=\dfrac{1}{2}\int e^{-u}\: du

\displaystyle\rm\longrightarrow I=-\dfrac{1}{2}e^{-u} + C

Substitute back u = x². We get:

\displaystyle\rm\longrightarrow I=\dfrac{-e^{-x^{2}}}{2} + C

Therefore:

\displaystyle\rm\longrightarrow \int\dfrac{2x}{2e^{x^{2}}}\: dx=\dfrac{-e^{-x^{2}}}{2} + C

→ Which is our required answer.

Learn More:

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\  tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}


anindyaadhikari13: Thanks for the brainliest :)
Similar questions