Math, asked by Harshawardhaku6437, 10 months ago

Integrate x^15/(1+x^32). What is the solution for this?

Answers

Answered by shadowsabers03
0

We are given to find,

\displaystyle\longrightarrow\sf{\int\dfrac{x^{15}}{x^{32}+1}\ dx}

\displaystyle\longrightarrow\sf{\dfrac{1}{16}\int\dfrac{16x^{15}}{(x^{16})^2+1}\ dx\quad\quad\dots(1)}

Let,

\displaystyle\longrightarrow\sf{u=x^{16}}

\displaystyle\longrightarrow\sf{\dfrac{du}{dx}=16x^{15}}

\displaystyle\longrightarrow\sf{dx=\dfrac{1}{16x^{15}}\ du}

Hence (1) becomes,

\displaystyle\longrightarrow\sf{\dfrac{1}{16}\int\dfrac{16x^{15}}{u^2+1}\cdot\dfrac{1}{16x^{15}}\ du}

\displaystyle\longrightarrow\sf{\dfrac{1}{16}\int\dfrac{1}{u^2+1}\ du}

\displaystyle\longrightarrow\sf{\dfrac{\tan^{-1}(u)}{16}+c}

\displaystyle\longrightarrow\sf{\underline{\underline{\dfrac{tan^{-1}(x^{16})}{16}+c}}}

Similar questions