Math, asked by khushikhurana88851, 3 months ago

integrate x^2 + 3x+1/x^4-x^2+1​

Answers

Answered by shrutipaul2006
0

Answer:

 { {x}^{2}  + 3x +  \frac{1}{ {x}^{4} } }  -  {x }^{2}  + 1

Answered by PharohX
3

Step-by-step explanation:

 \sf \int \bigg( \frac{( {x}^{2}  + 3x + 1)}{ ({x}^{4}  -  {x}^{2} + 1) }\bigg) \\

\sf \int  \frac{( {x}^{2}   + 1)}{ ({x}^{4}  -  {x}^{2} + 1) }dx + 3 \int \frac{x}{ {x}^{4}  -  {x}^{2}  + 1} dx  \\

 \sf \: let \:  \: I = I_{1} + 3I_{2}

 \sf \: I_{1}  =  \int \frac{ {x}^{2} + 1 }{ {x}^{4}  -  {x}^{2} + 1 } dx \\

 =  \sf \:  \int \frac{ {x}^{2} ( 1 + \frac{1}{ {x}^{2} } )}{ {x}^{2} ( {x}^{2} - 1 +  \frac{1}{ {x}^{2} })  }  dx\\

 =  \sf \:  \int \frac{  ( 1 + \frac{1}{ {x}^{2} } )}{  ( {x}^{2} - 1 +  \frac{1}{ {x}^{2} })  }  \\

 =  \sf \:  \int \frac{  ( 1 + \frac{1}{ {x}^{2} } )}{  ( {x}^{2}   - 2 + 1+  \frac{1}{ {x}^{2} })  }dx  \\

 =  \sf \:  \int \frac{  ( 1 + \frac{1}{ {x}^{2} } )}{  ( {x}^{2}   - 2 +  \frac{1}{ {x}^{2} }   + 1)  } dx \\

 =  \sf \:  \int \frac{  ( 1 + \frac{1}{ {x}^{2} } )}{ ( ( {x  -   \frac{1}{x} )}^{2 }   + 1)  }dx  \\

 \sf \: NOTE  \implies (x -  \frac{1}{x} )^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2(x)( \frac{1}{x} ) \\

 \orange{ \sf \:  \: (x +  \frac{1}{x} ) {}^{2}  =   {x}^{2}  - 2 +  \frac{1}{ {x}^{2} }} \\

 \sf \: Let \: (x  -   \frac{1}{x} ) = t \\

 \sf \: then \: (1  +  \frac{1}{ {x}^{2} })dx = dt \\

 =  \sf \:  \int \frac{  dt}{ (  {t}^{2}   + 1)  }  \\

 \sf \:  =  \tan^{ - 1} (t)

 \sf \:  l_{1}  =  \tan^{ - 1} \bigg(x -  \frac{1}{x} \bigg )  \\

 \sf \: Now  \:  \:   calculation \:  \:  of \:  \:  l_{2}

 \sf l_{2} = \int \frac{x}{ {x}^{4} -  {x}^{2}  + 1 } dx \\

 \sf \:  {x}^{2}  = p

 \sf \: 2xdx = dp

 \sf \: xdx =  \frac{dp}{2}  \\

 \sf l_{2} = \frac{1}{2}  \int \frac{dp}{ {p}^{2} -  p + 1 }  \\

 \sf l_{2} = \frac{1}{2}  \int \frac{dp}{ {p}^{2} - 2. p .( \frac{1}{2}) +  \frac{1}{ {2}^{2} }   -  \frac{1}{ {2}^{2} } + 1 }   \\

 \sf l_{2} = \frac{1}{2}  \int \frac{dp}{ {(p -  \frac{1}{2} )}^{2}  +(  \frac{ \sqrt{3} }{2}) ^{2}  }  \\

 \sf l_{2} = \frac{1}{2}  . \frac{2}{ \sqrt{3} }  \tan^{ - 1}  \bigg( \frac{p -  \frac{1}{2} }{ \frac{2}{ \sqrt{3} } }  \bigg)   \\

 \sf l_{2} = \frac{1}{ \sqrt{3} }  . \tan^{ - 1}  \bigg(  \frac{ \sqrt{3} (2p - 1)}{4}  \bigg)   \\

 \sf \: Replace \:  \:  p \:  \:  to \:  \:   {x}^{2}

 \sf l_{2} = \frac{1}{ \sqrt{3} }  . \tan^{ - 1}  \bigg(  \frac{ \sqrt{3} (2 {x}^{2}  - 1)}{4}  \bigg)   \\

RequiredAns

 \sf \: let \:  \: I = I_{1} + 3I_{2}

 \sf l =  \sf \:     \tan^{ - 1} \bigg(x -  \frac{1}{x} \bigg )  + 3.\frac{1}{ \sqrt{3} }  . \tan^{ - 1}  \bigg(  \frac{ \sqrt{3} (2 {x}^{2}  - 1)}{4}  \bigg)   \\

 \sf l =  \sf \:     \tan^{ - 1} \bigg(x -  \frac{1}{x} \bigg )  +  \sqrt{3}  . \tan^{ - 1}  \bigg(  \frac{ \sqrt{3} (2 {x}^{2}  - 1)}{4}  \bigg)   + c \\

Similar questions