Integrate [x^2] (Greatest Integer Function) with limit 0 to 2.
Answers
Answered by
82
5 answers · Mathematics
Best Answer
f(x) = [x²]. . . . (floor function of x²)
For 0 ≤ x < 1, 0 ≤ x² < 1, hence [x²] = 0
For 1 ≤ x < √2, 1 ≤ x² < 2, hence {x²] = 1
For √2 ≤ x < √3, 2 ≤ x² < 3, hence [x²] = 2
For √3 ≤ x < 2, 3 ≤ x² < 2, hence [x²] = 3
2. . . . . . .1. . . . . .√2. . . . . √3. . . . . .2
∫ [x²]dx = ∫ [x²]dx + ∫ [x²]dx + ∫ [x²]dx + ∫ [x²]dx
0. . . . . . 0. . . . . . 1. . . . . . √2. . . . .√3
2. . . . . . .1. . . . √2. . . . .√3. . . . . 2
∫ [x²]dx = ∫ 0 dx + ∫ 1 dx + ∫ 2 dx + ∫ 3 dx
0. . . . . . 0. . . . . 1. . . . . √2. . . . .√3
2
∫ [x²]dx = 0*(2 - 0) + 1*(√2 - 1) + 2*(√3 - √2) + 3*(2 - √3)
0
2
∫ [x²]dx = 0 + √2 - 1 + 2√3 - 2√2 + 6 - 3√3
0
2
∫ [x²]dx = 5 - √2 - √3
0
triptisingh095:
Mark as brainpiest
Similar questions