Integrate x/ a²cos²x+ b²sin²x
Answers
Answered by
0
Answer:
I=∫0πxa2cos2x+b2sin2xdx ......... (1)
=>I=∫0ππ−xa2cos2(π−x)+b2sin2(π−x)dx [Using Property,∫0af(x)dx=∫0af(a−x)dx]
=>I=∫0ππa2cos2x+b2sin2xdx−∫0πxa2cos2x+b2sin2xdx ....... (2)
Adding (1) and (2), We Get
=>2I=∫0ππa2cos2x+b2sin2xdx
=>I=π2∫0π1a2cos2x+b2sin2xdx
=>I=2.π2∫0π21a2cos2x+b2sin2xdx [Using Property,∫02af(x)dx=2∫0af(2a−x)dx,if f(2a−x)=f(x)]
=>I=π∫0π21a2cos2x+b2sin2xdx
Divinde Numerator and Denominator by cos2x, We get
=>I=π∫0π21cos2xa2cos2xcos2x+b2sin2xcos2xdx
=>I=π∫0π2sec2xa2+b2tan2xdx
Put b.tanx=t,then b.sec2xdx=dt, sec2x.dx=1bdt
also, when x=0, t=0 and when x=π2,t→∞
So,
=>I=πb∫0∞1a2+t2dt
=>I=πb.1a|tan−1(ta)|∞0
=>I=πab[π2−0] = π22ab
Step-by-step explanation:
please mark me as brainliest
Similar questions