Math, asked by whoop99, 2 months ago

integrate (x²+x-6)/[(x-2)(x+1)]​

Answers

Answered by shubhangisalve2606
2

Step-by-step explanation:

Considering ∫(x2 + x - 1)/(x2 + x - 6) dx By expressing the integral Read more on Sarthaks.com - https://www.sarthaks.com/647228/evaluate-the-integral-x-2-x-1-x-2-x-6-dx?show=647235#a647235

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\sf \: \dfrac{ {x}^{2}  + x - 6}{(x - 2)(x + 1)} \: dx

\rm  \:  =  \: \:\displaystyle\int\sf \: \dfrac{ {x}^{2}  + 3x - 2x - 6}{(x - 2)(x + 1)} \: dx

\rm  \:  =  \: \:\displaystyle\int\sf \: \dfrac{x(x  + 3)- 2(x  + 3)}{(x - 2)(x + 1)} \: dx

\rm  \:  =  \: \:\displaystyle\int\sf \: \dfrac{(x  + 3)(x - 2)}{(x - 2)(x + 1)} \: dx

\rm  \:  =  \: \:\displaystyle\int\sf \: \dfrac{x  + 3}{x + 1} \: dx

\rm  \:  =  \: \:\displaystyle\int\sf \: \dfrac{x  + 1 + 2}{x + 1} \: dx

\rm  \:  =  \: \:\displaystyle\int\sf \: \bigg( \dfrac{x  + 1}{x + 1}  +  \dfrac{2}{x + 1} \bigg) \: dx

\rm  \:  =  \: \:\displaystyle\int\sf \: \bigg( 1  +  \dfrac{2}{x + 1} \bigg) \: dx

\rm  \:  =  \: \:x + 2 log(x + 1) + c

Hence,

\rm :\longmapsto\:\displaystyle\int\sf \: \dfrac{ {x}^{2}  + x - 6}{(x - 2)(x + 1)} \: dx \:  =  \: x \:  + 2 log(x + 1)  + c

Formula Used :-

\rm :\longmapsto\:\displaystyle\int\sf \:  {x}^{n} dx= \dfrac{ {x}^{n + 1} }{n + 1} + c

\rm :\longmapsto\:\displaystyle\int\sf \: \dfrac{1}{x} \: dx \:  =  \:  log(x)  + c

Additional Information :-

\rm :\longmapsto\:\displaystyle\int\sf \: sinx \: dx =  -  \: cosx + c

\rm :\longmapsto\:\displaystyle\int\sf \: cosx \: dx =   \: sinx + c

\rm :\longmapsto\:\displaystyle\int\sf \: cosecx  \: cotx\: dx =  -   \: cosecx + c

\rm :\longmapsto\:\displaystyle\int\sf \: secx  \: tanx\: dx =  \: secx + c

\rm :\longmapsto\:\displaystyle\int\sf \:  {sec}^{2}x \: dx = tanx \:  +  \: c

\rm :\longmapsto\:\displaystyle\int\sf \:  {cosec}^{2}x \: dx =  -  \: cotx \:  +  \: c

\rm :\longmapsto\:\displaystyle\int\sf \: tanx \: dx = log(secx) \:  +  \: c

\rm :\longmapsto\:\displaystyle\int\sf \: cotx \: dx = log(sinx) \:  +  \: c

\rm :\longmapsto\:\displaystyle\int\sf \: secx \: dx = log(secx + tanx) \:  +  \: c

Similar questions