integration 1/1-cosx-sinx dx
Answers
Answered by
0
Answer:
Let,I=1/(1-cos x-sin x)
=> We know ,sin2x=2tan x/(1+tan^2x)
cos2x=(1-tan^2x)/(1+tan^2x)
Similarly,sin x=2tan x/2/(1+tan^2 x/2)
& cos x=(1-tan^2 x/2)/(1+tan^2 x/2)
These are called half angle formula of sin and cos.
Using these we can solve the given intregal.
I=1/(1-sin x-cos x) dx
I=1/(1-2tan x/2/(1+tan^2 x/2)-(1-tan^2 x/2)/(1+tan^2 x/2) dx
I=(1+tan^2 x/2)/(2tan^2 x/2-2tan x/2) dx
We know ,(1+tan^2 x/2)=sec^2 x/2
I=(sec^2 x/2)/(2tan^2 x/2-2tan x/2) dx
I=1/2(sec^2 x/2)/(tan^2 x/2-tan x/2) dx
Let, t=tan x/2
dt =(sec^2 x/2)*1/2 dx
I=1/t(t-1)
By partial fraction,1/t(t-1)=-1/t+1/(t-1)
I=-dt/t +dt/(t-1)
I=-log|t|+log|t-1|
I=log|(t-1)/t|
I=log|1-1/t|
Putting the value of t in above equation
I=log|1-1/(tan x/2)|
I=log|1-cot x/2|
This is the answer.
Similar questions
English,
4 months ago
English,
4 months ago
Computer Science,
4 months ago
History,
9 months ago
Social Sciences,
9 months ago
Music,
1 year ago
Physics,
1 year ago