Math, asked by himanshushendge9, 3 months ago

integration 2/(1-x)(1+x^2)​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \int \frac{2dx}{(1 - x)(1 +  {x}^{2} ) }  \\

  = \int \frac{(1 +  {x}^{2} ) + (1 - x)(1 + x)dx}{(1 - x)(1 +  {x}^{2} ) }  \\

 =  \int \frac{dx}{(1 - x)}  +  \int \frac{1 + x}{1 +  {x}^{2} } dx \\

 =  -  ln(1 - x)  +  \int \frac{dx}{ {x}^{2} + 1 }  +  \frac{1}{2}  \int \frac{2x}{1 +  {x}^{2} } dx \\

 =  -  ln(1 - x)  +    \tan ^{- 1} (x)  +  \frac{1}{2}   ln(1 +  {x}^{2} ) + c  \\

 =  -  ln(1 - x)  +    \tan ^{- 1} (x)  +    ln \sqrt{1 +  {x}^{2} } + c  \\

Similar questions