Math, asked by sivakarthikeyan2911, 1 month ago

integration 2x+7/
2x²+x+3 dx​

Answers

Answered by shadowsabers03
13

We're asked to evaluate the integral,

\displaystyle\longrightarrow I=\int\dfrac{2x+7}{2x^2+x+3}\ dx

Multiplying and dividing by 2,

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\dfrac{4x+14}{2x^2+x+3}\ dx

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\dfrac{4x+1+13}{2x^2+x+3}\ dx

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\dfrac{4x+1}{2x^2+x+3}\ dx+\dfrac{13}{2}\int\dfrac{1}{2x^2+x+3}\ dx\quad\quad\dots(1)

Consider,

\displaystyle\longrightarrow I_1=\int\dfrac{4x+1}{2x^2+x+3}\ dx

\displaystyle\longrightarrow I_1=\log\left|2x^2+x+3\right|

Consider,

\displaystyle\longrightarrow I_2=\int\dfrac{1}{2x^2+x+3}\ dx

\displaystyle\longrightarrow I_2=\dfrac{1}{2}\int\dfrac{1}{\left(x^2+\dfrac{1}{2}\,x+\dfrac{3}{2}\right)}\ dx

\displaystyle\longrightarrow I_2=\dfrac{1}{2}\int\dfrac{1}{\left(x^2+\dfrac{1}{2}\,x+\dfrac{1}{16}+\dfrac{23}{16}\right)}\ dx

\displaystyle\longrightarrow I_2=\dfrac{1}{2}\int\dfrac{1}{\left(x+\dfrac{1}{4}\right)^2+\left(\dfrac{\sqrt{23}}{4}\right)^2}\ dx

\displaystyle\longrightarrow I_2=\dfrac{1}{2}\cdot\dfrac{1}{\left(\frac{\sqrt{23}}{4}\right)}\tan^{-1}\left(\dfrac{x+\frac{1}{4}}{\frac{\sqrt{23}}{4}}\right)

\displaystyle\longrightarrow I_2=\dfrac{2}{\sqrt{23}}\tan^{-1}\left(\dfrac{4x+1}{\sqrt{23}}\right)

Then (1) becomes,

\displaystyle\longrightarrow I=\dfrac{1}{2}\log\left|2x^2+x+3\right|+\dfrac{13}{2}\cdot\dfrac{2}{\sqrt{23}}\tan^{-1}\left(\dfrac{4x+1}{\sqrt{23}}\right)+C

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{1}{2}\log\left|2x^2+x+3\right|+\dfrac{13}{\sqrt{23}}\tan^{-1}\left(\dfrac{4x+1}{\sqrt{23}}\right)+C}}


amansharma264: Great
Similar questions