Math, asked by abhayprasad63, 10 months ago

solve the following pairs of equation by reducing them to a pair of linear equation​

Attachments:

Answers

Answered by Anonymous
2

\sf\blue{Question:}

\sf{Solve:}

\sf{\frac{5}{x-1}+\frac{1}{y-2}=2}

\sf{\frac{6}{x-1}-\frac{3}{y-2}=1}

_________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ values \ of \ x \ and \ y \ are }

\sf{4 \ and \ 5 \ respectively.}

\sf\orange{Given:}

\sf{The \ given \ equations \ are}

\sf{\implies{\frac{5}{x-1}+\frac{1}{y-2}=2}}

\sf{\implies{\frac{6}{x-1}+\frac{3}{y-2}=1}}

\sf\pink{To \ find:}

\sf{The \ values \ of \ x \ and \ y.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ equations \ are}

\sf{\implies{\frac{5}{x-1}+\frax{1}{y-2}=2}}

\sf{\implies{\frac{6}{x-1}+\frac{3}{y-2}=1}}

\sf{Substitute \ \frac{1}{x-1} \ by \ a \ and \ \frac{1}{y-2} \ by \ b}

\sf{in \ the \ given \ equations.}

\sf{\therefore{5a+b=2...(1)}}

\sf{\therefore{6a-3b=1...(2)}}

\sf{Multiply \ equation (1) \ by \ 3}

\sf{15a+3b=3...(3)}

\sf{Add \ equations \ (2) \ and \ (3)}

\sf{6a-3b=1}

\sf{+}

\sf{15a+3b=6}

______________________

\sf{21a=7}

\sf{\therefore{a=\frac{7}{21}}}

\boxed{\sf{a=\frac{1}{3}}}

\sf{Substitute \ a=\frac{1}{3} \ in \ equation (1)}

\sf{5\times\frac{1}{3}+b=2}

\sf{\frac{5}{3}+b=2}

\sf{b=2-\frac{5}{3}}

\sf{b=\frac{6-5}{3}}

\boxed{\sf{b=\frac{1}{3}}}

\sf{Resubstituting \ values \ of \ a \ and \ b.}

\sf{\therefore{\frac{1}{x-1}=\frac{1}{3}}}

\sf{\therefore{x-1=3}}

\sf{\therefore{x=3+1}}

\boxed{\sf{\therefore{x=4}}}

\sf{\therefore{\frac{1}{y-2}=\frac{1}{3}}}

\sf{\therefore{y-2=3}}

\sf{\therefore{y=3+2}}

\boxed{\sf{\therefore{y=5}}}

\sf\purple{\tt{\therefore{The \ values \ of \ x \ and \ y \ are }}}

\sf\purple{\tt{4 \ and \ 5 \ respectively.}}

Similar questions