Math, asked by elsa14241, 8 months ago

Integration 2x by (1+xsquare )^1/4 dx

Answers

Answered by BrainlyPopularman
10

Question :–

 \\ { \bold{Find \:  \: the \:  \: value :  \int \dfrac{2x}{ {(1 +  {x}^{2} )}^{ \frac{1}{4} } }.dx }} \\

ANSWER :–

 \\ { \bold{I =   \int \dfrac{2x}{ {(1 +  {x}^{2} )}^{ \frac{1}{4} } }dx }} \\

▪︎Now let's use substitution method –

• Let's put   \:  \:  { \bold{1 +  {x}^{2}  = t \:  \:  - }}  \:  \:

• Now Differentiate with respect to 't'

  \\   \implies  \:  { \bold{(2x) \dfrac{dx}{dt}  = 1 \:  \:   }}  \:  \:  \\

  \\   \implies  \:  { \bold{(2x)dx= dt \:  \:   }}  \:  \:  \\

▪︎ So that –

 \\ \implies { \bold{I =   \int \dfrac{dt}{ {(t)}^{ \frac{1}{4} } } }} \\

 \\ \implies { \bold{I =   \int  {(t)}^{ -  \frac{1}{4} }  dt}} \\

 \\ \implies { \bold{I =   \ \dfrac{ {t}^{( -  \frac{1}{4}  + 1)} }{  - \frac{1}{4}   + 1}  + c}} \\

 \\ \implies { \bold{I =   \ \dfrac{ {t}^{\frac{3}{4}} }{   \frac{3}{4}   }  + c}} \\

 \\ \implies { \bold{I =    \frac{4}{3}  { {t}^{\frac{3}{4}} } + c}} \\

• Now replace 't'

 \\ \implies { \red{ \boxed{ \bold{I =    \frac{4}{3}  { {(1 +  {x}^{2} )}^{\frac{3}{4}}}  + c} }}} \\

 \rule{210}{2}

 \\ {  \pink{ \bold{ \underline{Used \:  \: formula} : -  }}} \\

 \\ { \bold{(1) \:  \:  \frac{d( {x}^{n} )}{dx}  = n {x}^{n - 1} }} \\

 \\ { \bold{(2) \:  \:  \frac{d(x )}{dx}  = 1 }} \\

 \\ { \bold{(3) \:  \:  \int {x}^{n}dx =  \frac{ {x}^{n + 1} }{n + 1}  + c }} \\

 \rule{210}{2}

Similar questions