integration cos2x-cos2a/cosx-cosa dx
Answers
Answered by
11
∫(cos 2x - cos 2a) / (cos x - cos a) dx
= ∫((2cos^2 x - 1) - (2cos^2 a - 1)) / (cos x - cos a) dx
= ∫(2 cos^2 x - 2 cos^2 a) / (cos x - cos a) dx
= ∫[2(cos x - cos a)(cos x + cos a)] / (cos x - cos a) dx
= ∫2(cos x + cos a) dx
= 2 sin x + x cos a + c.
Similar questions