integration dx/3 sin2 x+4 cos2x
Answers
Answered by
1
Answer:
I=16arctan(12cos(x))−13arctan(cos(x))+C
Step-by-step explanation:
Let
I=∫sin(x)(4+cos2(x))(2−sin2(x))dx
First rewrite the second bracket in the denominator to convert the sin2(x) term into cos2(x):
I=∫sin(x)(4+cos2(x))(1+cos2(x))dx
Now use the substitution u=cos(x) so that dx=−1sin(x)du and we have
I=−∫1(4+u2)(1+u2)du
Split into partial fractions:
I=13∫1u2+4−1u2+1du
Now use standard results
I=13(12arctan(u2)−arctan(u))+C
Finally, undo the substitution to get
I=16arctan(12cos(x))−13arctan(cos(x))+C
Similar questions