Math, asked by saikrishnasaidam, 2 months ago

integration DX/sin (x - a) sin (x-6)

Answers

Answered by King412
82

 \\ \color{violet} \large \underline{ \underline{  \bold{Solution :- }}} \\

 \\   \:  \:  \: \sf \:  \int \dfrac{dx}{ \sin(x - a) \sin(x - b) }  \\

 \\    \:  \sf \:  \:  \:  \:  \:   \:  \:\:  \qquad \:  \: {\leadsto} \: \:   \frac{1}{ \sin(b - a)} \:  {  \: \sf \:  \int \dfrac{ \sin(b - a)}{ \sin(x - a) \sin(x - b) }}   \: dx\\

 \\    \:  \sf \:  \:  \:  \:  \:   \:  \:\:  \qquad \:  \: {\leadsto} \: \:   \frac{1}{ \sin(b - a)} \:  {  \: \sf \:  \int \dfrac{ \sin(x - a) -  \sin(x - b)}{ \sin(x - a) \sin(x - b) }}   \: dx\\

 \\    \:  \sf \:  \:  \:  \:  \:   \:  \:\:  \qquad \:  \: {\leadsto} \: \:   \frac{1}{ \sin(b - a)} \:  {  \: \sf \:  \int \dfrac{ \sin(x - a)   \times  \cos(x - b) -   \cos(x - a) \times  \sin(x - b)}{ \sin(x - a) \sin(x - b) }}   \: dx\\

 \\    \:  \sf \:  \:  \:  \:  \:   \:  \:\:  \qquad \:  \: {\leadsto} \: \:   \frac{1}{ \sin(b - a)} \:    \: \sf \:  \int  \:[ \cot(x - b) -  \cot(x - a)]dx \\

 \\    \:  \sf \:  \:  \:  \:  \:   \:  \:\:  \qquad \:  \: {\leadsto} \: \:   \frac{1}{ \sin(b - a)} \:    \: \sf \:  \:[  \log | \sin(x - b)|  -   \log | \sin(x - a)| ] + C \\

 \\    \:  \sf \:  \:  \:  \:  \:   \:  \:\:  \qquad \:  \: {\leadsto} \: \:   \frac{1}{ \sin} (b - a)\:    \: \sf \:  \:[  \log | \sin(x - b)|  -   \log | \sin(x - a)| ] + C \\

 \\    \:  \sf \:  \:  \:  \:  \:   \:  \:\:  \qquad \:  \: {\leadsto} \: \:    \cosec(b - a)\:    \: \sf \:  \:[  \log | \sin(x - b)|  -   \log | \sin(x - a)| ] + C \\

 \\    \:  \sf \:  \:  \:  \:  \:   \:  \:\:  \qquad \:  \: {\leadsto} \: \:    \cosec(b - a)\:    \: \sf \:  \bigg[  \log  \bigg| \dfrac{ \sin(x - b)}{\sin(x - a)    }   \bigg | \bigg] + C \\

Note :-

Write Question properly .

Similar questions