Math, asked by sanchit1010107p92y7g, 1 year ago

integration of 1/cos(x-a)sin(x-b)

Answers

Answered by JinKazama1
14
Final Answer :
 \sec( a - b) ln( \frac{ \sin(x - b) }{ \cos(x - b) } )

Steps:
1) Multiply numerator and denominator by cos(a-b) .
2) Write cos(a-b) = cos((x-b) -(x-a)) in numerator.
3)Now, expand the terms and see magic.
We will get terns which are easily integrated.

Ex. Integration of cot(x-b) wrt. to x is
 - ln( \cos(x - b) )
Attachments:
Answered by sandhyasrinivasan14
1

Answer:

= \frac{1}{cos (b-a)}  log | \frac{sin (x-b)}{cos(x-a)} | +C

Given

∫1/cos(x-a)sin(x-b)

To Find

Integration of \int\ { 1/cos(x-a)sin(x-b)} \, dx

Solution

=\int\  \frac{1}{cos (x-a) sin (x-b)} \, dx

=\frac{1}{cos(b-a)} \int\  \frac{1}{cos (x-a) sin (x-b)} \, dx

=\frac{1}{cos (b-a)} \int\  \frac{cos(b-a)}{cos (x-a) sin (x-b)} \, dx

=\frac{1}{cos (b-a)} \int\ {\frac{cos (x-b) cos (x-a) + sin(x-b) sin(x-a)}{cos(x-a) sin(x-b)} } \, dx

=\frac{1}{cos (b-a)}\int\ {\frac{cos(x-b)}{sin(x-b)}  + \frac{sin(x-a)}{cos (x-a)} } \, dx

=\frac{1}{cos (b-a)}\int\{cot(x-b)} \,+ \int\ {tan(x-a)} \, dx

=\frac{1}{cos (b-a)}  [log| sin (x-b)|  -log |cos(x-a)|]

=\frac{1}{cos (b-a)}  log |\frac{sin (x-b)}{cos(x-a)} | + C

∴Final answer is   \frac{1}{cos (b-a)} log |\frac{sin (x-b)}{cos(x-a)} | + C

Similar questions