Math, asked by Abubakaralkashmiri, 1 year ago

integration of 1+cos2x/1-cos2x

Answers

Answered by TusharTva
0
just change the sign. rest is mostly same
Attachments:
Answered by Anonymous
125

♣ Qᴜᴇꜱᴛɪᴏɴ :

\large\boxed{\sf{\int \dfrac{1-cos2x}{1+cos2x}dx}}

♣ ᴀɴꜱᴡᴇʀ :

\large\boxed{\sf{\int \dfrac{1-\cos \left(2x\right)}{1+\cos \left(2x\right)}dx=\tan \left(x\right)-x+C}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\dfrac{1-\cos (2 x)}{1+\cos (2 x)}=\dfrac{2}{1+\cos (2 x)}-1

=\int \dfrac{2}{1+\cos \left(2x\right)}-1dx

\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx

=\int \dfrac{2}{1+\cos \left(2x\right)}dx-\int \:1dx

=\tan (x)-x

\sf{Add\:a\:constant\:to\:the\:solution}

\large\boxed{\sf{=\tan \left(x\right)-x+C}}

Similar questions