Math, asked by rlrajee501119033, 4 months ago

integration of {2 + sinx}^{3} cosxdx

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int(2 +  \sin(x))^{3} \cos(x)   dx \\

 =  \int(8 \cos(x)  +  \sin^{3} (x) \cos(x)   + 12 \sin(x)  \cos(x)  + 6 \sin^{2} (x)  \cos(x) )dx \\

 =  \int8 \cos(x) dx +   \int\sin^{3} (x) \cos(x) dx  + \int 12 \sin(x)  \cos(x) dx +  \int6 \sin^{2} (x)  \cos(x) dx \\

Let sin(x) = t

=> cos(x) dx = dt

 =  8\int\cos(x) dx +   \int \: t^{3} dt  +12 \int  t  dt +  6\int t^{2}  dt \\

 =  8 \sin(x) +   \frac{ {t}^{4} }{4}  +12 . \frac{ {t}^{2} }{2}  +  6.  \frac{ t^{3}}{3} \\

 = 8 \sin(x)  +  \frac{ \sin^{4} (x)  }{4}  + 6 \sin^{2} (x)  + 2 \sin^ {3} (x)  \\

Similar questions