Math, asked by tanishq2301, 2 months ago

Integration of (2cos x + 1)^2 dx
Please solve this step by step. Thanks

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  {(2cosx + 1)}^{2}  \: dx

\rm \:  =  \:  \: \:\displaystyle\int\rm  ({4cos}^{2}x + 1 + 4cosx)  \: dx

\red{\bigg \{ \because \:  {(x + y)}^{2} =  {x}^{2}  +  {y}^{2}   + 2xy\bigg \}}

\rm \:  =  \:  \: \:\displaystyle\int\rm  (2{(2cos}^{2}x )+ 1 + 4cosx)  \: dx

We know,

\boxed{ \bf{ \: 1 + cos2x =  {2cos}^{2}x }}

\rm \:  =  \:  \: \:\displaystyle\int\rm  (2(1 + cos2x)+ 1 + 4cosx)  \: dx

\rm \:  =  \:  \: \:\displaystyle\int\rm  (2 + 2cos2x+ 1 + 4cosx)  \: dx

\rm \:  =  \:  \: \:\displaystyle\int\rm  (2cos2x+ 3 + 4cosx)  \: dx

We know,

 \boxed{ \bf{\displaystyle\int\rm cosx \: dx \: =  \: sinx \:  +  \: c }}

and

 \boxed{ \bf{ \displaystyle\int\rm kdx \:  = \: \: kx + c }}

\rm \:  =  \:  \: 2 \times \dfrac{sin2x}{2} + 3x + 4sinx + c

\rm \:  =  \:   sin2x+ 3x + 4sinx + c

Hence,

 \boxed{ \bf{\displaystyle\int\bf  {(2cosx + 1)}^{2}  \: dx =sin2x + 4sinx + 3x + c }}

Additional Information :-

 \boxed{ \bf{\displaystyle\int\rm sinx \: dx \: =  \:  -  \: cosx \:  +  \: c }}

 \boxed{ \bf{\displaystyle\int\rm tanx \: dx \: =  \:  log \:( secx )\:  +  \: c }}

 \boxed{ \bf{\displaystyle\int\rm cotx \: dx \: =  \:  log \:( sinx )\:  +  \: c }}

 \boxed{ \bf{\displaystyle\int\rm secx \: dx \: =  \:  log \:( secx  + tanx)\:  +  \: c }}

 \boxed{ \bf{\displaystyle\int\rm cosecx \: dx \: =  \:  log \:( cosecx   -  cotx)\:  +  \: c }}

 \boxed{ \bf{\displaystyle\int\rm  {sec}^{2} x \: dx \: =  \:   \: tanx \:  +  \: c }}

 \boxed{ \bf{\displaystyle\int\rm  {cosec}^{2} x \: dx \: =  \:   -  \: cotx \:  +  \: c }}

Similar questions