Math, asked by rajmohanmurmu2020, 5 months ago

integration of 2x-1/root over (x2-2x+5)dx​

Attachments:

Answers

Answered by tarracharan
0

\bold{\int{\dfrac{2x-1}{\sqrt{x²-2x+5}}.dx}}

\bold{=\int{\dfrac{2x-2+1}{\sqrt{x²-2x+5}}.dx}}

\bold{=\int{\dfrac{2x-2}{\sqrt{x²-2x+5}}.dx} + \int{\dfrac{1}{\sqrt{x²-2x+5}}.dx}}

.

.

\sf{\red{⇒\int{\dfrac{2x-2}{\sqrt{x²-2x+5}}.dx}}}

\sf{x²-2x+5=t}

\sf{2x-2+0=\dfrac{dt}{dx}}

\sf{(2x-2).dx=dt}

\sf{\red{=\int{\dfrac{dt}{\sqrt{t}}}}}

\sf{\red{=\int{t^{-1/2}.dt}}}

\sf{\red{=\dfrac{t^{-\frac{1}{2}+1}}{-\dfrac{1}{2}+1}+c}}

\sf{\red{=2\sqrt{t}+c}}

\sf{\red{=2\sqrt{x²-2x+5}+c}}

.

.

\sf{\purple{⇒\int{\dfrac{1}{\sqrt{x²-2x+5}}.dx}}}

\sf{\purple{=\int{\dfrac{1}{\sqrt{x²-2x+1+4}}.dx}}}

\sf{\purple{=\int{\dfrac{1}{\sqrt{(x-1)²+(2)²}}.dx}}}

\sf{x-1=t}

\sf{dx =dt}

\sf{\purple{=\int{\dfrac{1}{\sqrt{(t)²+(2)²}}.dt}}}

\sf{\purple{=sinh^{-1}(\dfrac{t}{2})+c}}

\sf{\purple{=sinh^{-1}(\dfrac{x-1}{2})+c}}

.

.

\bold{=\int{\dfrac{2x-2}{\sqrt{x²-2x+5}}.dx} + \int{\dfrac{1}{\sqrt{x²-2x+5}}.dx}}

=\boxed{\bold{2\sqrt{x²-2x+5}+sinh^{-1}(\dfrac{x-1}{2})+c}}

Similar questions