Physics, asked by avanipatil, 10 months ago

integration of (2x(1-x^-3))dx​

Answers

Answered by BrainlyTornado
10

ANSWER:

x² + (2/x) + C

GIVEN:

2x(1 - x^{-3})

TO INTEGRATE:

2x(1 - x^{-3})

FORMUALE:

 \displaystyle \int( {x}^{n} )dx =  \frac{ {x}^{n + 1} }{n + 1}  + C

EXPLANATION:

 \displaystyle \int\bigg(2x(1 - x^{ - 3})\bigg)dx \\  \\ \\ \displaystyle 2\int \bigg(x(1 -  \frac{1}{ {x}^{3} } )\bigg)dx \\  \\ \\ 2 \int\bigg((x -   \frac{x}{ {x}^{3} } ) \bigg)dx \\ \\ \\ 2 \int xdx - 2 \int  \frac{1}{ {x}^{2} } dx \\ \\ \\ 2  \bigg( \frac{ {x}^{1 + 1} }{1 + 1} \bigg) + C_1 - 2  \bigg(\frac{ {x}^{ - 2 + 1} }{ - 2 + 1} \bigg)  - C_2 \\  \\ \\ 2\bigg(\frac{ {x}^{2} }{2} \bigg) + C_1 - 2\bigg(  \frac{ {x}^{ - 1} }{ - 1} \bigg)  -  C_2 \\  \\ \\ {x}^{2}  + C_1 +  \frac{2}{x}  - C_2 \\  \\ \\   {x}^{2}  +  \frac{2}{x}  + C

Here C is the contant which is equal to C_1 - C_2

\\ \displaystyle \sf \bf \int2x(1 - x^{ - 3})dx = {x}^{2}  +  \frac{2}{x}  + C

Answered by BrainlyPopularman
12

GIVEN :

• A function  \:  \: { \bold{ 2x(1 -  {x}^{ - 3} )}} \:  \:

TO FIND :

• Integration = ?

SOLUTION :

• Let the function –

  \\  \implies{ \bold{ I =  \int 2x(1 -  {x}^{ - 3} ).dx}}  \\

  \\  \implies{ \bold{ I =  \int  \{2x -(2x ) {x}^{ - 3}  \}.dx}}  \\

  \\  \implies{ \bold{ I = 2 \int (x - {x}^{ - 2}).dx}}  \\

• Using identity –

  \\  \:  \:  \blacktriangleright \:  \: { \bold{  \int  {x}^{n} .dx =  \dfrac{ {x}^{n + 1} }{n + 1} }}  \\

• So that –

  \\  \implies{ \bold{ I = 2  \left( \dfrac{{x}^{1 + 1} }{1 + 1}  -  \dfrac{{x}^{ - 2 + 1}}{ - 2 + 1} \right)+c}}  \\

  \\  \implies{ \bold{ I = 2  \left( \dfrac{{x}^{2} }{2}  -  \dfrac{{x}^{ - 1}}{ - 1} \right) + c}}  \\

  \\  \implies \large{ \boxed{ \bold{ I =   \left( {{x}^{2} }   +   \dfrac{2}{ x} \right) + c}}}  \\

 \\ \rule{220}{2} \\

OTHER IDENTITY :

  \\  \:  \:  \blacktriangleright \:  \: { \bold{  \int [K.F(x)].dx = K \int F(x).dx }}  \\

Similar questions