integration of 2x^2+14x+21/√x^2+4x+1
Answers
Answered by
1
Step-by-step explanation:
I=∫dx(x2+4x+5)2
=∫dx[(x+2)2+1]2
Let x+2=tanθ,
then dx=sec2θdθ
I=∫sec2θdθ(tan2θ+1)2=∫sec2θdθsec4θ=12∫(1+cos2θ)dθ=12(θ+sinθcosθ)+C=12[tan−1(x+2)+x+2x2+4x+5]+c
Answered by
0
Step-by-step explanation:
=∫dx(x2+4x+5)2
=∫dx[(x+2)2+1]2
Let x+2=tanθ,
then dx=sec2θdθ
I=∫sec2θdθ(tan2θ+1)2=∫sec2θdθsec4θ=12∫(1+cos2θ)dθ=12(θ+sinθcosθ)+C=12[tan−1(x+2)+x+2x2+4x+5]+c
mark e as brainliest if it helps you
Similar questions