integration of 3 cos x + 3 sin x upon 4 sin x + 5 cos x
Answers
Answered by
4
We want Integral of 3 (Cos x + Sin x) /(4 sin x + 5 Cos x) dx
Let f1 = Cos x + Sin x , and
f2 = 4 Sin x + 5 Cos x
f2' = d(f(x))/dx = 4 cos x - 5 sin x
Let f1 = A f2 + B f2'
So Cos x + sin x = 4A sin x+ 5A cosx + 4B cosx - 5B sinx
Compare coefficients on both sides:
4A - 5 B = 1 and 5 A + 4 B = 1
Solving these: A = 9/41 and B = -1/41
So the integrand: 3 f(x) / f2(x) = 3 * 9/41 f2(x)/f2(x) - 3 *1/41 * f2'(x)/f2(x)
Solution of the Integral : 27/31 * x - 3/41 * Ln (f2(x) ) + K
Answer: 27x/41 - 3/41 * Ln(4 Sinx + 5 Cos x) + K
Let f1 = Cos x + Sin x , and
f2 = 4 Sin x + 5 Cos x
f2' = d(f(x))/dx = 4 cos x - 5 sin x
Let f1 = A f2 + B f2'
So Cos x + sin x = 4A sin x+ 5A cosx + 4B cosx - 5B sinx
Compare coefficients on both sides:
4A - 5 B = 1 and 5 A + 4 B = 1
Solving these: A = 9/41 and B = -1/41
So the integrand: 3 f(x) / f2(x) = 3 * 9/41 f2(x)/f2(x) - 3 *1/41 * f2'(x)/f2(x)
Solution of the Integral : 27/31 * x - 3/41 * Ln (f2(x) ) + K
Answer: 27x/41 - 3/41 * Ln(4 Sinx + 5 Cos x) + K
kvnmurty:
:-)
Similar questions