Math, asked by akankshyamohanty209, 8 months ago

integration of Cos⁴x-sin⁴x/cosx-sinx dx​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int \frac{ \cos^{4} (x)  -  \sin ^{4} ( x ) }{ \cos(x)  -  \sin(x) } dx

 =  \int \frac{( \cos^{2} (x) -  \sin ^{2} (x) )( \cos^{2} (x) +  \sin  ^{2} (x)  ) }{ \cos(x)  -  \sin(x) } dx

 = \int \frac{( \cos(x)  -  \sin(x))( \cos(x)  +  \sin(x) ) }{ \cos(x)  -  \sin(x) } dx

 = \int \cos(x)dx  + \int\sin(x) dx

 =  -  \sin(x)  +  \cos(x)  + c

Similar questions