integration of cotx ?
Answers
Answered by
1
1. Proof
Strategy: Make in terms of sin's and cos's; Use Subtitution.
cot x dx = cos x sin xdxset
u = sin x.
then we find
du = cos x dx
substitute du=cos x, u=sin x
cos x sin xdx = du usolve integral
= ln |u| + C
substitute back u=sin
Strategy: Make in terms of sin's and cos's; Use Subtitution.
cot x dx = cos x sin xdxset
u = sin x.
then we find
du = cos x dx
substitute du=cos x, u=sin x
cos x sin xdx = du usolve integral
= ln |u| + C
substitute back u=sin
Similar questions