integration of DX/(2x^2+X+3)
Answers
Step-by-step explanation:
To find --->
∫ dx / (2x² + x + 3 )
Solution---> First of all we make whole square in denominator as follows
2x² + x + 3 = 2 ( x² + x / 2 + 3 / 2 )
= 2 { x² + 2 ( 1 / 4 ) x + 3 / 2 }
Adding and subtracting (1 / 4 )² to form whole square
= 2 [{ x² + 2(1/4)x +(1/4)²} +3/2 - (1/4 )²]
We have an identity
( a + b )² = a² + b² + 2 ab , we get
= 2 { ( x + 1/4 )² + (3 / 2 ) - ( 1 / 16 ) }
= 2 { ( x + 1 / 4 )² + ( 24 - 1 ) / 16 }
= 2 { ( x + 1 / 4 )² + 23 / 16 }
= 2 { ( x + 1 / 4 )² + ( √23 / 4 )² }
Now returning to original problem
∫ dx / (2x² + x + 3 )
Putting value of denominator from above we get
=∫ dx / ( x + 1/4 )² + ( √23 / 4 )²
Let x + 1/4 = t
dx = dt
=∫ dt /{ t² + (√23 / 4 )² }
= 1/ ( √23 /4) tan⁻¹ { t / (√23 / 4 ) } + C
Putting value of t we get
= 4 / √23 tan⁻¹ { 4 ( x + 1/4 ) / √23 } + C
= 4 / √23 tan⁻¹ { ( 4x + 1 ) / √23 } + C