Math, asked by Humaira1154, 10 months ago

Integration of dx/(tanx+cotx+secx+cosecx)

Answers

Answered by Unni007
3

Let,

A = tanx + cotx + secx + cosecx

⇒ A = (Sinx/Cosx) + (Cosx/Sinx) + (1/Cosx) + (1/Sinx)

⇒ A  = (Sin²x + Cos²x + Sinx + Cosx)/Sinx.Cosx

⇒ A  = (1 + Sinx + Cosx)/Sinx.Cosx

Multiply by (Sinx+Cosx-1) in denominator and numerator

⇒ A = (Sinx + Cosx + 1)(Sinx + Cosx - 1) / (Sinx.Cosx)(Sinx + Cosx - 1)

⇒ A  = (Sin²x + Cos²x + 2Sinx.Cosx - 1) / (Sinx.Cosx)(Sinx + Cosx - 1)

⇒ A  = (1 + 2Sinx.Cosx - 1) / (Sinx.Cosx)(Sinx + Cosx - 1)      

⇒ A  = (2Sinx.Cosx) / (Sinx.Cosx)(Sinx + Cosx - 1)    

⇒ A  = 2 / (Sinx + Cosx - 1)  

--------------------------------------------------------------------------------------------------------

I = ∫ dx/(tanx + cotx + secx + cosecx)

⇒ I = ∫ dx/A

⇒ I = ∫ (Sinx+Cosx-1) dx/2

⇒ I = ( -Cosx + Sinx - x)/2 + C

Similar questions