Math, asked by avinashmarshal, 1 year ago

integration of dx /x√x^4-1=​

Answers

Answered by Swarup1998
41
\underline{\textsf{Solution :}}

\textsf{Let us take}\:\boxed{\mathsf{x^{2}= sec\theta}}

\textsf{Taking differentials, we get}

\mathsf{2x\:dx = sec\theta\:tan\theta\:d\theta}

\to \mathsf{dx=\frac{sec\theta\:tan\theta\:d\theta}{2x}}

\to \boxed{\mathsf{dx = \frac{sec\theta\:tan\theta\:d\theta}{2\sqrt{sec\theta}}}}

\mathsf{Now,\:\int \frac{dx}{x\sqrt{x^{4}-1}}}

\mathsf{=\int \frac{\frac{sec\theta\:tan\theta\:d\theta}{2\sqrt{sec\theta}}}{\sqrt{sec\theta}\sqrt{sec^{2}\theta-1}}}

\mathsf{=\frac{1}{2} \int \frac{sec\theta\:tan\theta\:d\theta}{\sqrt{sec\theta}\sqrt{sec\theta}\sqrt{tan^{2}\theta}}}

\mathsf{=\frac{1}{2} \int \frac{sec\theta\:tan\theta\:d\theta}{sec\theta\:tan\theta}}

\mathsf{=\frac{1}{2} \int d\theta}

\mathsf{=\frac{1}{2} \theta + C}

\textsf{where C is integral constant}

\mathsf{=\frac{1}{2} sec^{-1}(x^{2})+C}

\to \boxed{\mathsf{\int \frac{dx}{x\sqrt{x^{4}-1}}=\frac{1}{2} sec^{-1}(x^{2})+C}}

\textsf{which is the required integral.}

avinashmarshal: tq
Swarup1998: :)
avinashmarshal: heloo sir
avinashmarshal: say me the answer for aum of 2digit odd numbet
Swarup1998: let me try :)
avinashmarshal: tq
Swarup1998: Done! Check there. :)
avinashmarshal: were
Answered by Shubhendu8898
14

Answer:\frac{1}{2}\sec^{-1}(x^2)+c

Step-by-step explanation:

Let,

I=\int{\frac{dx}{x\sqrt{x^4-1}}}

Dividing  denominator and  numerator by x,

I=\int{\frac{x\;dx}{x^2\sqrt{x^4-1}}}

Putting x² = t ;

2x = dt/dx

x.dx = dt/2

Now,

I=\frac{1}{2}\int{\frac{dt}{t\sqrt{t^2-1}}}\\\;\\I=\frac{1}{2}.\sec^{-1}(t)+c\\\;\\I=\frac{1}{2}\sec^{-1}(x^2)+c

Note:- \int{\frac{dx}{x\sqrt{x^2-1}}=\sec^{-1}(x)

Similar questions