Math, asked by rickcharlie, 1 year ago

integration of (e^(2logx))×(x^(-3))dx

Answers

Answered by umang2299
17
e^(2logx)=x²
so,
x²•(x^(-3))=x^(-1)=1/x
now , integration of 1/x=logx

rickcharlie: solve this pls, integration of x^3+5x^2-4÷x^2.dx
umang2299: x⁴/4+5x³/3+4/x
Answered by pulakmath007
7

\displaystyle \sf{  \int  {e}^{2logx} \:  {x}^{ - 3}   \: dx  = log \: x + c}

Given :

The integral

\displaystyle \sf{  \int  {e}^{2logx} \:  {x}^{ - 3}   \: dx }

To find :

To integrate

Solution :

Step 1 of 2 :

Write down the given Integral

The given Integral is

\displaystyle \sf{  \int  {e}^{2logx} \:  {x}^{ - 3}   \: dx }

Step 2 of 2 :

Integrate the integral

\displaystyle \sf{  \int  {e}^{2logx} \:  {x}^{ - 3}   \: dx }

\displaystyle \sf{  =  \int  {e}^{log  {x}^{2} } \:  {x}^{ - 3}   \: dx }

\displaystyle \sf{  =  \int   {x}^{2} . \:  {x}^{ - 3}   \: dx }

\displaystyle \sf{  =  \int   {x}^{2 - 3}   \: dx }

\displaystyle \sf{  =  \int   {x}^{ - 1}   \: dx }

\displaystyle \sf{  =  \int   \frac{1}{x}    \: dx }

\displaystyle \sf{  =  log \: x + c }

Where c is integration constant

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions