integration of e^x (cosx-sinx)cosec^2 x dx
Answers
Find more:
Integrate of ex sec x(1+tanx) dx
https://brainly.in/question/6040969
Answer:
\textbf{To find:}To find:
\int\,e^x(cosx-sinx)cosec^2x\,dx∫e
x
(cosx−sinx)cosec
2
xdx
\text{Consider,}Consider,
\int\,e^x(cosx-sinx)cosec^2x\,dx∫e
x
(cosx−sinx)cosec
2
xdx
=\int\,e^x(cosx\,cosec^2x-sinx\,cosec^2x)\,dx=∫e
x
(cosxcosec
2
x−sinxcosec
2
x)dx
=\int\,e^x(\frac{1}{sinx}\,\frac{cosx}{sinx}-sinx\,\frac{1}{sin^2x})\,dx=∫e
x
(
sinx
1
sinx
cosx
−sinx
sin
2
x
1
)dx
=\int\,e^x(cosecx\,cotx-cosecx)\,dx=∫e
x
(cosecxcotx−cosecx)dx
=\int\,e^x(-cosecx+cosecx\,cotx)\,dx=∫e
x
(−cosecx+cosecxcotx)dx
\begin{gathered}\boxed{\begin{minipage}{4cm}\textbf{Take }$\bf\,f(x)=-cosecx\\\\\bf\,f'(x)=cosecx\,cotx$\end{minipage}}\end{gathered}
=\int\,e^x[(f(x)+f'(x)]\,dx=∫e
x
[(f(x)+f
′
(x)]dx
\text{Using}Using
\boxed{\bf\,\int\,e^x[(f(x)+f'(x)]\,dx=e^x\,f(x)+c}
∫e
x
[(f(x)+f
′
(x)]dx=e
x
f(x)+c
=e^x\,f(x)+c=e
x
f(x)+c
=e^x\,(-cosecx)+c=e
x
(−cosecx)+c
=-e^x\,cosecx+c=−e
x
cosecx+c
\therefore\bf\int\,e^x(cosx-sinx)cosec^2x\,dx=-e^x\,cosecx+c∴∫e
x
(cosx−sinx)cosec
2
xdx=−e
x
cosecx+c
Find more:
Integrate of ex sec x(1+tanx) dx
https://brainly.in/question/6040969