Physics, asked by javeedwani074, 9 months ago

Integration of integral with upper and lower limit as q2 and q1 of funtion -Kq1q2/x^2
dx

Answers

Answered by BendingReality
27

Answer:

\sf \displaystyle I = K \ \left[q2-q1\right] \\ \\

Explanation:

We are ask to integrate the following :

\sf \displaystyle I = \int\limits^{q2}_{q1} {\dfrac{K \ q1 \ q2}{x^2} } \, dx \\ \\

\sf \displaystyle I =K \ q1 \ q2  \int\limits^{q2}_{q1} {x^{-2} } \, dx \\ \\

\sf \displaystyle I =K \ q1 \ q2 \left|\dfrac{x^{-2+1}}{-2+1}\right|^{q2}_{q1} \\ \\

\sf \displaystyle I =K \ q1 \ q2 \left|\dfrac{x^{-1}}{-1}\right|^{q2}_{q1} \\ \\

\sf \displaystyle I =-K \ q1 \ q2 \left|\dfrac{1}{x}\right|^{q2}_{q1} \\ \\

\sf \displaystyle I =- K \ q1 \ q2 \left[\dfrac{1}{q2}- \dfrac{1}{q1} \right]\\ \\

\sf \displaystyle I =-K \ q1 \ q2 \left[\dfrac{q1-q2}{q1 \ q2}\right]\\ \\

\sf \displaystyle I =-K \ \left[\dfrac{q1-q2}{1}\right] \\ \\

\sf \displaystyle I = K \ \left[q2-q1\right] \\ \\

Hence we get answer.

Similar questions