Math, asked by phanianindita821, 1 year ago

Integration of log sin2x from 0 to π/2

Answers

Answered by abhi178
28
I =  \int\limits^{\pi/2}_0 {log(sin2x) \, dx

We know, sin2x = 2sinx.cosx
So, log(sin2x) = log(2sinx.cosx) = log2 + logsinx + logcosx
so, I =  \int\limits^{\pi/2}_0 {log(sin2x) \, dx =\int\limits^{\pi/2}_0{log2}\,dx+\int\limits^{\pi/2}_0{log(sinx)\,dx+\int\limits^{\pi/2}_0{log(cosx)\,dx
Now, we have to find II =  \int\limits^{\pi/2}_0 {log(sinx) \, dx and I =  \int\limits^{\pi/2}_0 {log(cosx) \, dx

I =  \int\limits^{\pi/2}_0 {log(sinx) \, dx =\int\limits^{\pi/2}_0{log(sin(\pi/2-x)}\,dx
I =  \int\limits^{\pi/2}_0 {log(cosx) \, dx
2I =  \int\limits^{\pi/2}_0 {log(cosx)+log(sinx)}\, dx =\int\limits^{\pi/2}_0{log(sin2x/2)}\,dx
=\int\limits^{\pi/2}_0[{log(sin2x)-log2}]\,dx=\int\limits^{\pi/2}_0{logsin2x}\,dx-\int\limits^{\pi/2}_0{log2}\,dx
=1/2\int\limits^{\pi}_0{log(sinx)\,dx-\int\limits^{\pi/2}_0{log2}\,dx
=2/2\int\limits^{\pi/2}_0{log(sinx)\,dx-\int\limits^{\pi/2}_0{log2}\,dx
2I = I -\pi/2log2
I = -π/2log2

Similarly , I = \int\limits^{\pi/2}_0{log(cosx)\,dx = -\pi/2log2\int\limits^{\pi/2}_0{log(cosx)\,dx = -\pi/2log2

Then, \int\limits^{\pi/2}_0{log(sin2x)\,dx = -\pi/2log2 - \pi/2log+\pi/2log2=\pi/2log2

Hence, answer is -π/2 log2
Similar questions