integration of root cotx/sinxcosx
Answers
Answered by
6
Cotx = cosx/sinx. So,
root cot x /sinx cosx = (cosx)(-1/2) (sinx)(-3/2) (1)
Take,
(cosx)(-1/2)=Z (2)
Differentiating,
(sinx)(-3/2) dx = dZ. (3)
Putting this back in equation (1)
(root cot x /sinx cosx ) dx= (cosx)(-1/2) (sinx)(-3/2)dx = Z dZ
∫ Z dZ = Z2 / 2 + C (4)
C is the integration constant.
Putting the value of Z from (2),
the ans is,
(cosx)(-1) /2 + C
=( 1 / 2cosx) + C
root cot x /sinx cosx = (cosx)(-1/2) (sinx)(-3/2) (1)
Take,
(cosx)(-1/2)=Z (2)
Differentiating,
(sinx)(-3/2) dx = dZ. (3)
Putting this back in equation (1)
(root cot x /sinx cosx ) dx= (cosx)(-1/2) (sinx)(-3/2)dx = Z dZ
∫ Z dZ = Z2 / 2 + C (4)
C is the integration constant.
Putting the value of Z from (2),
the ans is,
(cosx)(-1) /2 + C
=( 1 / 2cosx) + C
deepakverma060:
if u like mark brilliant
Similar questions