integration of sec X upon sec 2x DX
Answers
Answered by
2
Strategy: The strategy is not obvious. Multiply and divide by (sec x + tan x); use Substitution.
(integral) sec x dx = (integral) sec x sec x + tan x
sec x + tan x dx
set
u = sec x + tan x
then we find
du = (sec x tan x + sec2 x) dx
substitute du = (sec x tan x + sec2 x) dx, u = sec x + tan x
(integral) sec x sec x + tan x
sec x + tan x dx = (integral)
(sec2 x + sec x tan x) dx
sec x + tan x
= (integral)
du
u
solve integral
= ln |u| + C
substitute back u=sec x + tan x
= ln |sec x + tan x| + C
Q.E.D.
PLZ MARK ME BRAINLIST
Anonymous:
Hi
Similar questions