integration of secx/(1+cosecx)
Answers
Answered by
4
Hey there!
Now,
For the other part we integrate by parts,
[tex]\begin{aligned} \int\frac{1}{\cos x}\tan^2x\,dx&=\int\frac{\sin x}{\cos^2 x}\tan x\,dx\\ &=\frac{1}{\cos x}\tan x-\int\frac{1}{\cos x}(1+\tan^2x)\,dx\\ &=\frac{1}{\cos x}\tan x-\int\frac{\cos x}{1-\sin^2x}\,dx-\int\frac{1}{\cos x}\tan^2x\,dx\\ &=\frac{1}{\cos x}\tan x-\text{artanh}\,\sin x-\int\frac{1}{\cos x}\tan^2x\,dx. \end{aligned}[/tex]
Finally,
Cheers!
Now,
For the other part we integrate by parts,
[tex]\begin{aligned} \int\frac{1}{\cos x}\tan^2x\,dx&=\int\frac{\sin x}{\cos^2 x}\tan x\,dx\\ &=\frac{1}{\cos x}\tan x-\int\frac{1}{\cos x}(1+\tan^2x)\,dx\\ &=\frac{1}{\cos x}\tan x-\int\frac{\cos x}{1-\sin^2x}\,dx-\int\frac{1}{\cos x}\tan^2x\,dx\\ &=\frac{1}{\cos x}\tan x-\text{artanh}\,\sin x-\int\frac{1}{\cos x}\tan^2x\,dx. \end{aligned}[/tex]
Finally,
Cheers!
Answered by
0
Answer:
your answer attached in the photo
Attachments:
Similar questions