Math, asked by xhg, 1 year ago

integration of sin^4 2x

Answers

Answered by rahulmandviya
4

sin4(2x)dxSubstitute u=2x ⟶ dx=12du (Steps):=12sin4(u)du
sin4(u)duApply reduction formula:sinn(u)du=n−1nsinn−2(u)du−cos(u)sinn−1(u)nwith n=4:=−cos(u)sin3(u)4+34sin2(u)du
apply product rule
sin2(u)duApply the last reduction formula again with n=2:=−cos(u)sin(u)2+12∫1du… or choose an alternative:
Apply product-to-sum formulasNow solving:∫1duApply constant rule:=uPlug in solved integrals:cos(u)sin(u)2+12∫1du=u2cos(u)sin(u)2Plug in solved integrals:cos(u)sin3(u)4+34sin2(u)du=−cos(u)sin3(u)43cos(u)sin(u)8+3u8Plug in solved integrals:12sin4(u)du=−cos(u)sin3(u)83cos(u)sin(u)16+3u16Undo substitution u=2x:=−cos(2x)sin3(2x)83cos(2x)sin(2x)16+3x8The problem is solved:sin4(2x)dx=−cos(2x)sin3(2x)83cos(2x)sin(2x)16+3x8+CRewrite/simplify:=sin(8x)−8sin(4x)+24x64+C

i guess that helps you

xhg: Surely! it will help
Similar questions