integration of sin(ln x)dx
Answers
Answered by
1
I=∫sin(logx)×1dx=sin(logx)×x−∫cos(logx)×(x1)×xdx=xsin(logx)−∫cos(logx)×1dx=xsin(logx)−[cos(logx)×x−∫sin(logx)×(x1)×xdx]∴I=xsin(logx)−cos(logx)×x−∫sin(logx)dxor2I=x[sin(logx)−cos(logx)]∴I=(2x)[sin(logx)−cos(logx)]
Similar questions