Math, asked by adityagargonly, 11 months ago

a = 7 + 4 root 3 , find the value of a^2 + 1 / a^2 .

Answers

Answered by Anonymous
34

Given :

a = 7 + 4√3

Find :

\implies\:a^{2}\:+\:\dfrac{1}{a^{2}}

Solution :

We have ..

\Rightarrow\:a\:=\:7\:+\:4\sqrt{3}

Now, squaring on both sides

\Rightarrow\:a^{2}\:=\:(7\:+\:4\sqrt{3})^{2}

(a + b)² = a² + b² + 2ab

\Rightarrow\:a^{2}\:=\:(7)^{2}\:+\:(4\sqrt{3})^{2}\:+\:2(7)(4\sqrt{3}

\Rightarrow\:a^{2}\:=\:49\:+\:48\:+\:56\sqrt{3}

\Rightarrow\:a^{2}\:=\:97\:+\:56\sqrt{3}

Now,

We have ..

\implies\:a^{2}\:=\:97\:+\:56\sqrt{3}

Take reciprocal of it.

\Rightarrow\:\dfrac{1}{a^{2}}\:=\:\dfrac{1}{97\:+\:56\sqrt{3}}

On rationalizing we get,

\Rightarrow \:  \dfrac{1}{ {a}^{2} }  \:  =  \:  \dfrac{97 \:  -  \: 56 \sqrt{3} }{1}

\implies\:\dfrac{1}{a^{2}}\:=\:97\:-\:56\sqrt{3}

Now,

\Rightarrow\:a^{2}\:+\:\dfrac{1}{a^{2}}\:=\:97\:+\:56\sqrt{3}\:+\:97\:-\:56\sqrt{3}

\implies\:a^{2}\:+\:\dfrac{1}{a^{2}}\:=\:194

a² + 1/a² = 194.

Answered by BrainlyConqueror0901
33

Answer:

\huge{\pink{\green{\sf{\therefore a^{2}+\frac{1}{{a}^{2}}=194}}}}

Step-by-step explanation:

\huge{\pink{\green{\underline{\red{\sf{SOLUTION-}}}}}}

• In the given question information given about value of a .

• We have to find the value that is given.

  \underline \bold{Given :}  \\ \implies a = 7 + 4 \sqrt{3}  \\  \\  \underline \bold{To \: Find : } \\   \implies  {a}^{2}  +  \frac{1}{ {a}^{2} }  = ?

• According to given question :

\bold{We\:know-} \\\bold{{a+b}^{2}=a^{2}+b^{2}+2ab}\\\bold{By\:using\:this\:formula-}\\\implies ( {a +  \frac{1}{ a } })^{2}  =   {a}^{2}  +  \frac{1}{ {a}^{2} } + 2 \times a \times  \frac{1}{a}   \\  \implies (7 + 4 \sqrt{3}  +  \frac{1}{7 + 4 \sqrt{3} } )^{2}  =  {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2

 \bold{Rationalise\:\frac{1}{7+4\sqrt{3}}}\\\implies  (7 + 4 \sqrt{3}  + \frac{1}{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} } )^{2}  =  {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2 \\  \implies (7 + 4 \sqrt{3}  +  \frac{7 - 4 \sqrt{3} }{49 - 48} )^{2}  =  {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2  \\  \implies  {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2 = (7 + 4 \sqrt{3}  + 7 -  4\sqrt{3} )^{2}  \\  \implies  {a}^{2}  +  \frac{1}{ {a}^{2} }   + 2 =  {14}^{2}  \\  \implies  {a}^{2}  +  \frac{1}{ {a}^{2} } = 196 - 2 \\   \bold{\implies  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 194}

Similar questions